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It can scarcely be denied that the supreme goal of all theory is to make the
irreducible basic elements as simple and as few as possible without having to
surrender the adequate representation of a single datum of experience.

—Albert Einstein

1 Introduction

People often cooperate with each other, even when one of the parties has every incentive

to take advantage of another party. Such behavior appears to contradict the assumption of

individual rationality that underlies much of economic theory. Game theory, the field that

studies decision-making when outcomes depend on the choices made by others as well as

by oneself, is traditionally predicated on individual rationality. This principle implies that

outcomes necessarily occur in equilibrium: nobody could have gained from having made

some other choice, given the choices made by the others. Instead, in experiments we observe

otherwise: people often cooperate in prisoner’s dilemmas, reward trust in trust games, and

punish unfairness in ultimatum games, despite every attempt having been made by the

experimenters to ensure subjects are confident they will remain anonymous to each other

(and often to the experimenter as well).

Since individual rationality does not always hold, at least one of the following must be

true: some people are not solely individualistic, or some people are not completely rational

(in the game-theoretic sense). This does not vitiate the methods of equilibrium analysis in

game theory; on the contrary, they are likely to be of use provided one accounts for other-

regarding preferences, or for bounded rationality. However, the goal of a tractable model

incorporating these principles has been elusive. In this context, Einstein’s quote is arguably

no less applicable to economics than it is to physics: we ought to strive to explain as much

of observed behavior as we can given a minimum of complexity in the foundations of the

theory.

This prepare presents a model that is intended to open a new path toward this goal.

Guided by the results of the experimental literature within the field of behavioral game the-

ory, I incorporate other-regarding preferences as well as a specific manifestation of bounded

rationality that has been given the term “quasi-magical thinking” (Shafir and Tversky 1992).

Together, they suggest four emotions at play in the decision-making process. Envy and guilt
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are described by other-regarding preferences, with decisions made to avoid experiencing these

feelings. Quasi-magical thinking, on the other hand, is influenced by the immediate emotions

of hope and fear. The distinction between immediate and anticipated emotions is relevant,

as it separates nonconsequential decision-making (of which quasi-magical thinking is an ex-

ample) from the consequential decision-making assumed in standard economic theory (Rick

and Loewenstein 2010).

These are not modelled as dichotomous phenomena, but rather interact closely, resulting

in interesting predictions. Other-regarding preferences are defined similarly as in the seminal

model of Fehr and Schmidt 1999, but with three innovations: they are given a nonlinear

specification allowing for interior solutions (so that players do not necessarily jump from

rational behavior to cooperative behavior as parameters vary); the preferences are not defined

over realized outcomes but rather on expected outcomes, allowing for probabilistic decision-

making; and the potential of a uneven split serving as the benchmark for a fair outcome is

accounted for, with a bargaining model offered to suggest how such a situation might come

about. Quasi-magical thinking, proposed in Shafir and Tversky 1992 as decision-making that

follows the erroneous belief (which may be understood to be false) that one’s actions affect

others’ actions, is defined for asymmetric games as well as symmetric ones. In symmetric

games, which present identical choices to each player, the natural definition for such belief is

that choosing some action induces the opponent to choose the same action, but it is not clear

how to define magical beliefs in asymmetric games. I tackle this problem by assuming that

a quasi-magical thinker reveals how much they care about the opponent’s payoff when they

choose an action, and the worst possible interpretation of the signal is made and reciprocated

by the opponent.

While I do not purport to have an all-encompassing model that is ready to apply to all

possible situations, I believe that this model offers some novel and useful methods to analyze

decision-making. The literature review will discuss experimental results and theoretical

models that are most salient to the topic at hand. Then the model will be laid out, with

illustrative examples provided as appropriate. A summary of the model, discussion of its

limitations, and future avenues of research concludes the paper.
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2 Literature Review

Four games with distinct characteristics and strong interest among experimenters are given

particular attention. The prisoner’s dilemma is the classic illustration of the conflict between

individual and collective interest, while the traveler’s dilemma shows how disregarding an

equilibrium strategy can greatly improve one’s outcome provided the opponent does the

same. The ultimatum game and trust game introduce the potential to engage in reciprocity,

i.e. forfeiting money in order to reward or punish an opponent who is either kind or mean,

with the former likely to result in players exhibiting negative reciprocity, and the latter

allowing players the choice to display positive reciprocity.

In the standard allegory justifying the name “prisoner’s dilemma,” two partners in crime

are in jail and facing three criminal charges, each of which carries a sentence of, say, three

years. The prosecutor has sufficient evidence to prove their guilt on two of the charges, but

not the third. However, each defendant is able to provide evidence implicating the other on

the third count, so the defendant offers each a deal in order to elicit the desired evidence:

provide the evidence, and one of his charges will be dropped. The prisoners are separated

and unable to communicate when the deal is offered.

The traveler’s dilemma, crafted as a paradox of rationality (Basu 1994), is played by two

airline customers whose luggage has been lost by an airline. Each traveler’s luggage contains

identical copies of an antique, and they ask to be compensated for its value but cannot prove

what the value is. The airline manager with whom they are discussing the matter has a plan;

he will separate the travelers and ask them to independently provide a value for the luggage.

If different values are provided, then the lower value is taken to be the true value and each is

compensated that amount, plus a $2 reward to the one providing the lower and presumably

honest value, and minus a $2 penalty to the one the higher and presumably dishonest value.

The airline is not willing to reimburse more than $100 per person, but does not wish to take

money from either customer, so claims may not be less than $2 or more than $100. However,

the travelers do not simply provide their best appraisals of the value, as a normal person

might. Instead, they surprise the manager by making claims of $2. This is because they are

rational payoff-maximizers, and this is the equilibrium strategy. Any higher claim gives the
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other traveler an opportunity to undercut the claim and thereby get a higher payment.

The ultimatum game (Güth, Schmittberger, and Schwarze 1982) and trust game (Berg,

Dickhaut, and McCabe 1995) are sequential games in which a player is given an endowment

and has an option of sending some of it to the opponent, who can take an action to reciprocate

towards the first-stage player. In the ultimatum game, the second-stage player can reject the

offer, which results in both players leaving with nothing. In the trust game, the endowment

is multiplied by some factor, which leaves the second-stage player the ability to repay the

first-stage player. The ultimatum game is a test of negative reciprocity, while the trust game

is a test of positive reciprocity.

Relevant experimental findings are discussed in the following section, proceeded by a

summary of the theoretical literature developed to account for many of the findings. The

most salient literature is addressed; repeated games are mostly omitted, and some topics

outside of the scope of the model, such as framing effects, are not covered.

2.1 Experimental Literature

Evidence that people engage in quasi-magical thinking was presented in an experiment re-

ported in Shafir and Tversky 1992, which presented three groups of subjects with a prisoner’s

dilemma. One group was told the opponent had cooperated, and another was told the op-

ponent had defected. The third was told nothing about the opponent’s decision. More

participants cooperated when told the opponent cooperated than when told the opponent

defected, as expected, but still more cooperated when they were not informed either way.

Presumably, many people have a predisposition to try to do their part to bring about a

favorable outcome. An eye-tracking study (Hristova and Grinberg 2008) corroborated these

findings, finding that players paid more attention to all possible outcomes when uninformed

of the opponent’s choice, and otherwise were more likely to compare only the two possible

outcomes given the other’s choice.

A survey of ultimatum bargaining games is given in C. Camerer 2003. Most offers range

from 40% to 50% of the endowment, and such offers are usually accepted, but offers of less

than 20% are likely to be rejected. The motives for making fair offers are ambiguous, since

either altruism or fear of rejection can cause a proposer to behave fairly. Dictator game
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experiments, which remove the ability of the responder to reject an offer, eliminate this

ambiguity. Both motives are likely to be relevant, since dictator game offers are lower (sug-

gesting that high offers in ultimatum games are strategic) but positive (indicating altruism

is also a factor). While results are robust within the typical experimental population, strik-

ingly different outcomes arise in less market-integrated cultures that follow very different

fairness norms. Also, when the fair solution is not readily apparent, disagreement of what

constitutes a fair outcome, and hence a higher rejection rate, is more likely. This occurs,

for example, when outside options are adjusted so that one or both players leave with some

positive amount in the event of a rejection, leaving one with a strategic advantage over the

other.

An early experiment of the traveler’s dilemma was conducted for Capra et al. 1999, which

had subjects play ten rounds of a traveler’s dilemma for a variety of bonus/penalty amounts

ranging from 5¢ to 80¢, with claims limited to amounts between 80¢ and 200¢ inclusive.

For low bonus/penalty parameters, average claims were consistently close to 200¢, while for

high parameters initial claims were somewhat lower but fell to near-equilibrium levels by the

final period. Intermediate values of the bonus-penalty resulted in average claims stabilizing

near the middle of the choice set at 120¢ to 150¢. In another experiment, 51 members of the

Game Theory Society were asked to submit claims for the standard claim and bonus/penalty

amounts, in order to text whether experts play rationality. Ten participants did not, as they

submitted the maximum claim in spite of the fact that this strategy is dominated: claiming

99 will always yield a higher payoff than claiming 100. Only ten others claimed less than

94, with three playing the equilibrium strategy; the remaining claims ranged from 94 to 99

(C. F. Camerer, Ho, and Chong 2004).

An informative experiment of the trust game is given in Burks, Carpenter, and Verhoogen

2003, and a meta-analysis is given in Johnson and Mislin 2011. Patterns uncovered by the

meta-analysis include the following: on average, 50% of the amount available to the senders is

sent, and 37% of the amount available to the receivers is returned. Playing against a human

significantly increases trust, subjects in Africa are less trusting, providing the receiver with a

guaranteed endowment possibly reduces the amount sent, and students are less trustworthy

than others. Burks, Carpenter, and Verhoogen 2003 found that having subjects play both
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roles reduced both trust and trustworthiness provided they were informed of this beforehand,

and also find that a measure of Machiavellian personality traits obtained by questionnaire is

associated with less trust but not with less trustworthiness. Another experiment of the trust

game found that subjects often sent money despite reporting that they expected to receive

less than the amount sent, although they sent less on average then those who expected to

at least break even (Ashraf, Bohnet, and Piankov 2006), a finding which I am inclined to

interpret as evidence of quasi-magical thinking. Such players send money for the sake of

sending money, out of hope if not expectation that the opponent will return a fair share of

the investment.

2.2 Theoretical Literature

The seminal model that formalized the notion that people want to help those who help them,

and hurt those who hurt them, was introduced in Rabin 1993, while Fehr and Schmidt 1999

explored the implications when people derive utility from their relative payoffs compared to

another in addition to their own payoff. Rabin 1993 transformed games into psychological

games for which utilities are subjected to beliefs about the opponent’s intentions, as well as

beliefs about the opponent’s beliefs about the player’s intentions, and applied a “kindness”

function to actions and beliefs. “Fairness equilibria” occur when the beliefs are correct. Fehr

and Schmidt 1999 introduced a utility function of the form

U(xi) = xi − αi max{0, xj − xi} − βi max{0, xi − xj},

with utility adversely affected when the opponent receives a higher payoff, and also (perhaps

less so) when the opponent receives less. These dual concepts of reciprocity and inequity-

aversion were combined into a single model by Bolton and Ockenfels 2000, while Dufwenberg

and Kirchsteiger 2004 extended the theory to the class of sequential games, which includes

the ultimatum game and trust games. The role of emotions, such as kindness and vengeance,

that depend on experience is modelled in Cox, Friedman, and Gjerstad 2007.

Explicit models of bounded rationality are proposed in McKelvey and Palfrey 1995 and

C. F. Camerer, Ho, and Chong 2004. The former assumes that players systematically make

random mistakes in choosing best-responses, but better outcomes remain more likely than
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worse ones; the propensity to make a mistake is given by a single parameter, and “quan-

tal response equilibrium” is achieved when players determine the opponent’s probability

distribution over strategies. The cognitive hierarchy model proposes that players perform

backward inductive reasoning to varying depths of iteration, and that each players believes

that the other players perform one less level of iteration than they do. Magical thinking is

explored for the class of symmetric games in Daley and Sadowski 2017, while an essentially

equivalent concept called “superrationality” was proposed by Hofstader 1983. The differing

terminology reflects different interpretations of the idea: magical thinking is generally re-

garded as a cognitive bias, while superrationality is considered a deliberate form of reasoning

that is believed to be common knowledge.

3 Model

Consider a two-person non-cooperative game in which each of Players 1 and 2 must choose

one of two actions; call them a “high” action H and a “low” action L. The payoff to Player

1 is ajk, where j ∈ {H,L} is Player 1’s action and k ∈ {H,L} is Player 2’s actions; the

payoff to Player 2 given these actions is bjk. This game is expressed in normal form by

H L
H (aHH , bHH) (aHL, bHL)
L (aLH , bLH) (aLL, bLL)

For now, I do not apply a utility function to the payoffs. Suppose Player 1 plays H with

probability x1 and Player 2 plays H with probability x2; the quantities xi are referred to as

“strategies.” Let πi(xi, x−i) denote Player i’s expected payoff given the strategies xi and x−i

(where −i refers to the opponent). For brevity, where there is believed to be no potential

confusion, πi(xi, x−i) will simply be expressed by πi.

These games will be treated as continuous games. Depending on the context, strategies

may either represent probabilities of playing one of two possible strategies, or represent

selections from a continuous range of possible outcomes. The latter interpretation is only

possible because utility functions are not yet invoked.

Example 1. Prisoner’s Dilemma
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Suppose players choose whether to cooperate or to defect. Choosing to defect grants a

payment of 1, and an additional payment of 2 is made to a player if the opponent cooperates.

This game has the following normal form, with xi representing the probability that Player i

cooperates:

Cooperate Defect
Cooperate (2, 2) (0, 3)

Defect (3, 0) (1, 1)

Example 2. Trust Game

Two players, an sender (Player 1) and a receiver (Player 2), are each given an endowment

of 1. The send may invest some of his or her endowment by sending it to the receiver. The

amount is multiplied by three and delivered to the receiver, who may return some fraction of

the amount received. The matrix form of this game, with x1 representing the amount sent

and x2 the fraction returned, is

Return All Return None
Send All (3, 1) (0, 4)

Send None (1, 1) (1, 1)

Note that this is not the normal form of the sequential game, which would take into account

distinct responses to each investment amount. This matrix representation simply serves to

define the payoffs.

Example 3. Ultimatum Game

A proposer (Player 1) is given an endowment of 1 and chooses to offer some amount to

a responder (Player 2), who chooses whether to accept or reject, with a rejection resulting in

payoffs of 0 to both players. The strategy x1 represents the offer amount, and the strategy x2

represents the probability of accepting the amount offered.

Accept Reject
Offer All (0, 1) (0, 0)

Offer None (1, 0) (0, 0)

Example 4. Mini-Ultimatum Game

10



www.manaraa.com

This is a discrete version of the standard ultimatum game in which the offer amount must

be selected from two choices: in this case, a high offer of 2 out of 4, or a low offer of 1 out

of 4. The responder only chooses whether to accept or reject a low offer. The strategy x1

represents the probability of making a high offer, and x2 represents the probability of accepting

a low offer if it is made.

Accept Low Demand High
High Offer (2, 2) (2, 2)
Low Offer (3, 1) (0, 0)

3.1 Cooperation

In order to define the players’ preferences for fairness, it is necessary to establish what

constitutes a “fair” outcome. The simplest such notion presumes that an outcome is fair if

it grants both players equal payoffs. It is plausible that asymmetries in payoffs may lead

a player to feel entitled to a higher payoff than the other. For that reason I provide an

alternative method to find the benchmark that an other-regarding player might consider to

be most fair, using a bargaining model similar to one outlined in (Luce and Raiffa 2012).

Suppose a solution (x1, x2) is proposed by one of the players or by some third-party, and

the players were to discuss whether this solution was appropriate. Assume that the players

are particularly spiteful negotiators, and one of the players notices that by playing x̂i 6= x̂−i,

while he might be worse off than under the proposed solution, the opponent would incur a

larger loss, i.e.

πi(xi, x−i)− πi(x̂i, x−i) < π
i
(xi, x−i)− π−i(x̂i, x−i).

The opponent in turn looks for a counter-threat strategy x̂−i 6= x−i satisfying

πi(xi, x−i)− πi(x̂i, x̂−i) > π−i(xi, x−i)− π−i(x̂i, x−i),

turning the tables on Player i and rendering the threat ineffective. However, if such a counter-

threat does not exist, then Player −i agrees that the proposed solution is not acceptable,

and they go back to the drawing board.

This bargaining process can be analyzed using the theory of zero-sum games, as by

making the threat x̂i, Player i is seeking to increase the relative payoff πi−π−i, even though
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the individual payoffs are both decreased. Likewise, Player −i’s counter-threat seeks to

reduce, and hopefully negate, the effectiveness of the threat by decreasing πi−π−i, which of

course is the same as increasing π−i − πi. These differences may be regarding as the payoffs

of a new game, which may be called a “difference game” (and is also known as a “relative

payoff game”). This new game is zero-sum (meaning that the sum of each player’s payoffs

in any outcome is zero), hence as each player makes threats and counter-threats increasing

their relative payoffs, the minimax theorem guarantees that when an equilibrium solution

is reached, πi − π−i must equal some unique constant λi. This quantity is known as the

value of the zero-sum difference game, and it may be called “leverage” in the context of this

bargaining model. Thus, Player 1 must accept any solution for which π1 − π2 ≤ λ1, and

similarly Player 2 must accept any solution satisfying π2 − π1 ≤ λ2 = −λ1. Given these

constraints, each player would look for an acceptable solution granting the highest possible

payoff. Call such a solution an “egalitarian solution,” defined as a solution (x1, x2) that

maximizes πi subject to πi − π−i ≤ λi for one of the players; the name reflects the fact that

it is essentially equivalent to its namesake in cooperative game theory, as will be discussed

further.1

Contrasting with the egalitarian solution is the outcome (x1, x2) that would arise were

the bargaining players to fail to reach an acceptable solution, unleashing a threat and a

counter-threat. More precisely, define this outcome as that which minimizes πi subject to

πi − π−i = λi. This may be identified as the disagreement point of the Nash bargaining

problem from cooperative game theory, which seeks to identify a fair division of possible

payoffs given a disagreement point that grants both players some suboptimal amount if

an agreement is not reached. The cooperative game theoretic approach is axiomatic, as it

proposes the properties a fair solution should satisfies and determines the solution satisfying

such properties. It turns out that not all reasonable properties can be fulfilled simultaneously.

For instance, the Nash bargaining solution (which maximizes the product of surplus payoffs)

is unaffected by the addition of irrelevant alternatives; however, increasing the available

resources might leave one agent worse off (Nash 1950). On the other hand, the Kalai-

1In some coordination games it would be unclear to the players how to achieve an egalitarian solution
without communicating. This complication can be ruled out by restricting the model to games such that if
(x1, x2) and (y1, y2) are egalitarian solutions, so are (x1, y2) and (y1, x2).

12
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Smorodinsky solution (which maximizes payoffs under the requirement that the ratio of

each agent’s payoff to the disagreement payoff is equal to the ratio of that agent’s best

possible payoff to the disagreement payoff) satisfies the latter property but not the former

(Kalai and Smorodinsky 1975). If the solution that grants equal surplus payoffs to each

player is chosen, then both of the above properties hold, but scale-invariance does not hold;

in the context of the bargaining problem, payoffs represent utilities and therefore should be

unique up to a positive linear transformation, but the egalitarian solution requires that the

agents’ utilities be compared with one another (Kalai 1977).

The equivalence between my egalitarian solution and Kalai’s is explained as follows: if

the condition is not met, then the player with the lower surplus payoff can play a threat, and

expect a counter-threat leading to the outcome (x1, x2), which is more costly to the opponent

than to the player. The problem of interpersonal utility comparison is dealt with by assuming

the players base their decisions on monetary payoffs rather than utilities. Changing this

assumption would require normalizing the utility functions by imposing common knowledge

of relative marginal utilities at some outcome, say, the disagreement outcome.

I apply the concept to three of the above examples to demonstrate the egalitarian solution

and how it comes about in the bargaining process:

1. Consider the mini-ultimatum game in Example 4, and suppose a split of 3 for the

proposer and 1 for the responder is proposed. The responder’s threat is to reject the low

offer; carrying out the threat lowers the proposer’s payoff by 3, but the responder’s by only

1. If the responder demands 3, then the proposer’s threat is to offer nothing, which is more

costly to the responder than the proposer. No such threat is available to either player if 2 is

offered and accepted, and since this outcome is Pareto-optimal, it is the egalitarian solution.

The threat solution is reached when an offer is rejected, leaving both players with 0.

2. In the prisoner’s dilemma of Example 1, mutual cooperation is the egalitarian solution.

If either player defects with any positive probability, the opponent’s threat is to defect. The

threat solution is the Nash equilibrium of mutual defection.

3. Consider the trust game of Example 2. The egalitarian solution is for the entire en-

dowment to be sent (as required for Pareto-optimality), and for two-thirds of the amount

received to be returned (which is required for fairness, as then both players end up with the

13
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same payoff). Note that whether the receiver is provided a show-up fee equal to the endow-

ment, which would ensure both have the same payoff in the Nash equilibrium/disagreement

outcome, or not has no effect on the egalitarian solution.

Note that the threat solution is a Nash equilibrium in the prisoner’s dilemma but not

in the ultimatum game. However, in the associated difference game, it is an equilibrium

in both examples, as it will be in any game. Also note that the egalitarian solution is not

unique, as can be demonstrated by a simple coordination game with two distinct equilibria

granting identical payoffs.

A natural question one might ask is whether players actually employ this reasoning in

evaluating the fairness of an outcome. Experiments employing a variant of the ultimatum

game, in which one or both players keep all or part of their proposed shares in the event

of a rejected offer, have shown that many proposers and responders continue to use the

focal point of an even split as the criterion for fairness (such as Güth and Huck 1997). For

example, if proposers always get to keep at least one-fourth of the amount they propose for

themselves, in the egalitarian solution, the proposer offers three-eights of the endowment and

the responder accepts, since then the difference in payoffs (1/4) is the same as in the threat

outcome of a rejected offer. However, in one such experiment (Fellner and Güth 2003), many

even splits were proposed, and many low offers were rejected.

In addition, I have constructed a game for which the egalitarian solution is rather unintu-

itive. Take the prisoner’s dilemma scenario, but alter it so that one of the prisoners has some

sinister plot against the other prisoner, to be carried out if the latter is believed to defect.

However, the plot must be carried out immediately, before the other prisoner’s decision can

be known. Suppose also that the other prisoner is aware of the plot, but has no defense or

counter-threat against it. Carrying out the plot is costly for the threatening prisoner, as he

will be the principal suspect for this new crime and likely end up with a worse sentence, but

suppose the outcome is far more dreadful for the victim. Payoffs capturing this scenario are

given by
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Cooperate Defect
Cooperate (7, 7) (5, 8)

Defect (8, 5) (6, 6)
Threaten (4, 1) (4, 1)

The egalitarian solution is for the threatening prisoner to defect, and for the other to

cooperate. Since it seems unreasonable that the threat would be carried out without knowl-

edge of the opponent’s action, this probably is not reasonable to consider as an optimal and

equitable solution no matter how spiteful the prisoners are.

Having discussed the problem of determining the cooperative outcome, it remains to

define how players respond to deviations from cooperative behavior.

3.2 Other-Regarding Preferences

Throughout the model, players are assumed to exhibit these preferences.

Definition 1. An other-regarding player’s preferences are defined by the utility function

ui(πi, π−i, βi) = πi −
βi
σi

(πi − π−i − ρi)2 ,

where σi = πi(xi, x−i) − πi(xi, x−i), and ρi is the difference between Player i’s payoff and

Player −i’s in whatever outcome they deem fair. The reference point ρi is assumed to

be common knowledge. The free parameter βi satisfies βi ∈ (0,∞), and the opponent’s

preferences are assumed to have the same functional form with a known, and possibly distinct,

parameter β−i ∈ (0,∞). Both βi and β−i are common knowledge.

The reference point ρi is assumed to be common knowledge, even though this may not

be the case in practice. It could be that simply ρi = 0; I also suggest ρi = λi = πi(xi, x−i)−

π−i(xi, x−i). Typically it is assumed that β1 = β2, to simplify the mathematics and because

this is a reasonable belief for the players to hold.

The quantity σi ensures that decisions are scale-invariant, i.e. multiplying both players’

payoff matrices by the same positive number does not affect the predicted outcome. An

alternative definition is σi = σ−i = maxj,k∈{H,L} |ajk − bjk|, or the difference in payoffs

for the most unequal possible outcome. The definition used is deliberately inapplicable to

degenerate games, like the dictator game, which have σi = σ−i = 0. For such games the
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utility function is undefined. This reflects the possibility that other-regarding preferences

might reflect strategic considerations instead of distributional preferences over outcomes.

Definition 2. Given βi ∈ (0,∞), if x−i is known, a rational other-regarding (ROR) player

selects a best response from the set

x∗i (x−i; βi) = argmax
x∈[0,1]

ui(x, x−i; βi),

where ui(xi, x−i; βi) = ui (πi(xi, x−i), π−i(xi, x−i); βi). For βi ∈ {0,∞}

x∗i (x−i; 0) = lim
β→0+

x∗i (x−i; β)

x∗i (x−i;∞) = lim
β→∞

x∗i (x−i; β)

Treating β = 0 as a limiting case removes some equilibria that are not strict, such as the

standard solution to the ultimatum game (which is often resolved by taking an infinitesimally

small offer to be the rational offer); in effect, β = 0 can be thought of as a very small but

positive β, so that there is always some utility gain from rejecting an offer of zero. The case

of β =∞ is hypothetical, but will prove to be useful in defining QMT behavior.

It will also be interesting to study the Nash equilibria that exist given these preferences,

for in the simultaneous (or static) case, and in the sequential case in which subgame perfect

equilibria are selected by rational players. (Subgame perfect equilibria are those under which

the player moving second plays the best response to the first player’s move, who anticipates

this and acts accordingly.)

Definition 3. The set of static equilibria for ROR players with common βi = β, and common

knowledge of type and preferences, is denoted by Nash(β). In sequential games for which

Player i is the first stage player, the set of subgame perfect equilibria for Player i is denoted

SPEi(β).

Note that xi = x∗i (x−i;∞); hence the optimal solution (x1, x2) is a Nash equilibrium

when β1 = β2 = ∞. Since the utility function has a quadratic specification, as opposed

to the linear functional form often used since Fehr and Schmidt 1999, the best-response

functions depend on the opponent’s strategy over some subinterval of the opponent’s range
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of strategies. This allows for interior solutions, such as a sender in the trust game sending a

fractional offer.

The departure from expected utility theory, in that the utility function is applied to

expected payoffs rather than evaluating the expectation of utilities for each outcome, perhaps

needs justification. It may be that the most fair outcome requires each player to play a mixed

strategy. Consider a two-player version of the Platonia Dilemma, which was introduced to

illustrate the concept of “superrationality” (Hofstader 1983). Two people have been offered

a chance to earn a large lottery prize, and it will be awarded to whomever claims it by the

next day provided that exactly one person claims it. No communication is permitted prior to

or after the deadline, and no attempt may be made to identify the other potential claimant

and share the prize if it is received.

Normalize the payoffs so that earning the prize provides a payoff of 1, and not earning it

yields a payoff of 0. This game is represented in normal form by

Ignore Claim
Ignore (0, 0) (0, 1)
Claim (1, 0) (0, 0)

In the unique Nash equilibrium, both players choose action A, which is also a weakly domi-

nant strategy. However, in the egalitarian solution, each player chooses A with probability

1/2, leaving both with expected payoffs of 1/4. Suppose the game is played sequentially,

with Player 1 playing first; also suppose Player 2 observes Player 1 (or some trusted third

party) flip a coin to choose between the actions, but does not observe the result. A recipro-

cating player would be expected to also select an action by a coin toss. Therefore, we should

have x∗2(1/2,∞) = 1/2. While this is the case with the preferences defined here, by instead

applying the utility function to each pure outcome, Player 2 would actually be indifferent

between actions.

3.2.1 Mini-Ultimatum Game

Consider a mini-ultimatum game in Example 4. If both players are rational and other-

regarding with parameter β, this game has the unique Nash equilibrium

Nash(β) =
{(0, 1)}, β ≤ 1

4{(
1− 1

4β
, 1
)}

, β ≥ 1
4
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where the first strategy in each strategy pair is the probability that a high offer is made, and

the second strategy is the probability that a low offer is accepted.

The higher the proposer’s parameter β, the more likely the higher offer is made given the

opponent has the same β, provided the proposer is rational and believes both players are

similarly other-regarding. If in fact β2 > β1, then the low offer is accepted with probability

β1/β2 if β1 ≥ 1
4
, and with probability 1

4β2
if β1 ≤ 1

4
. If the mixed strategy chosen by the

proposer is known to the responder, than the lower the probability with which the low offer

is made, the more likely the responder is to accept the low offer, since

x∗2(x1; β2) =

{
1

4β2(1−x1) , x1 ≤ 1− 1
4β2

1, x1 ≥ 1− 1
4β2

If mixed strategies are regarded as fractional offers in the continuous version of the game, then

this implies that higher offers are more likely to be accepted, as is observed in experiments.

3.3 Quasi-Magical Thinking in Symmetric Games

I present the commonly used and most natural definition of quasi-magical thinking, adapted

to this model:

Definition 4. In a symmetric game, a quasi-magical thinker (QMT) plays

ẋi(βi) = argmax
x∈[0,1]

ui(x, x; βi)

Thus the QMT simply maximizes utility (which in this case is simply the payoff, because

the other-regarding term in the utility function is zero) under the assumption that the

opponent chooses the same action.

The presence of QMTs in the population can affect the choices made by the rational

players, if the proportion of QMTs in the population is known. Suppose that players are

either QMTs or rational, with the term “rational” allowing for other-regarding preferences.

Also suppose that rational players believe the opponent is a QMT with probability θ. This

may reflect a belief that QMTs make up this proportion of the population from which

players are drawn, or a posterior probability based on specific information that might be

known about the opponent. The game then becomes a Bayesian game in which a QMT
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plays a fixed strategy and the rational players strive to maximize utility while according for

the possibility of QMT behavior in the opponent.

There may even be good reason for a rational behavior to adopt quasi-magical thinking

in order to escalate an equilibrium “trap.” I will discuss this in the context of the traveler’s

dilemma, and propose a type of equilibrium in which players mix between QMT behavior

and rational behavior.

3.3.1 Traveler’s Dilemma

The traveler’s dilemma provides an excellent illustration of the impact the presence of irra-

tional players can have on rational players, as demonstrated by the analysis given in (Becker,

Carter, Naeve, et al. 2005). It will turn out to be analogous to the prisoner’s dilemma with

other-regarding preferences, but is studied separately because of its relative simplicity.

Let θ denote the probability that a rational player is paired with a QMT (due to a

distribution within the population or to the opponent choosing to play as a QMT with this

probability). Suppose the maximum claim is n, but the bonus/penalty is 2. Then the payoff

from claiming n, given that a rational opponent claims n + 1, is θ(n − 2) + (1 − θ)(n + 2).

The payoff matrix for each player becomes, from the perspective of the row player,

Claim n− 1 Claim n− 2 · · · · · · · · · Claim 3 Claim 2
Claim n− 1: n+ 2θ n− 3 + 5θ · · · · · · · · · 1 + (n+ 1)θ (n+ 2)θ

Claim n− 2: n+ 2
. . . . . . . . . . . .

...
...

...
...

. . . . . . . . . . . .
...

...
...

...
. . . . . . . . . . . . 1 + 6θ

...
...

...
. . . . . . . . . . . . 1 + 5θ 6θ

Claim 3: 5 · · · · · · 5 5 3 + 2θ 5θ
Claim 2: 4 · · · · · · · · · 4 4 2 + 2θ

with the strictly dominated strategy of claiming n omitted. For sufficiently small θ, the

Bayesian Nash equilibrium is the usual equilibrium, but if θ > 2/n, the usual equilibrium

no longer holds because claiming n − 1 results in a higher payoff than claiming 2 given

that the opponent claims 2 due to potential gain if the opponent happens to be a QMT.

Also, when θ > 1/2, it is always profitable to increase one’s claim because having a QMT

opponent is very likely, so the rational players claim n− 1 in the Bayesian Nash equilibrium

for this case. If 2/n < θ < 1/2, then every Bayesian Nash equilibrium requires the rational
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players to play a mixed strategy. For example, if n = 20 and θ = 0.4, then in the payoff-

dominant equilibrium, 19 is claimed with probability 0.4, 18 with probability 0.13, and 17

with probability 0.47, yielding an expected payoff of 18.4, as computed with the online

program “Game Theory Explorer” (Savani and Stengel 2015). While the equilibria are not

unique, one can derive useful facts about their supports (i.e. the set of claims that are made

with positive probability) and expected payoffs, as Becker, et al. (2005) do for the case

n = 100.

It is possible to endogenize θ by allowing players to deliberately choose to adopt QMT

behavior, perhaps out of cognizance of the self-defeating nature of rational thinking. This

would serve to eliminate a free parameter from the model. A similar model is presented in

(Wolpert et al. 2011), in which players are assumed to adopt a persona of either complete

rationality, or of complete irrationality, the latter of which is defined as drawing the claim

from a uniform distribution over the choice set. I propose a similar approach: rather than

selecting a strategy per se, players select a type θi ∈ [0, 1] representing the probability that

a player eschews rational thinking in favor of the QMT strategy. Given θi, an equilibrium

under this approach exists when given θ−i, Player i has no incentive to change type if the

opponent’s rational strategy were to update the rational strategy in response to Player i’s

new type.

To illustrate this, suppose that θ ∈ {0, 1}, so that players choose to be completely

rational, or exclusively a QMT. Also, suppose that n = 100. If both players choose to be

rational, then they will claim $2, but then if either player decides to be a QMT and claim

$100, that player leaves with $97 rather than $2 since the rational opponent will change

strategies accordingly. Thus, it is not an equilibrium for both players to be rational, since

behaving irrationality can increase either player’s payoff, holding constant the opponent’s

type. In fact, this formulation of the game is a hawk-dove game with payoff matrix

QMT Rational
QMT (100, 100) (97, 101)

Rational (101, 97) (2, 2)

This game has two pure equilibrium in which the players choose different types, and a mixed

equilibrium in which the players choose to be rational with a small probability. Given the

symmetry of the game, the mixed equilibrium is the preferred solution, since neither player
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has any particular entitlement to the more profitable equilibrium of being rational against a

cooperative opponent.

The flaw in this setup is that if a player chooses to be rational, the rational strategy is not

known unless the opponent’s choice is known, and this cannot be the case in a single-shot

game. I conjecture that allowing for a continuum of types resolves this problem, because

an equilibrium will allow for a constant θ∗ ∈ [0, 1] for each player and therefore leaving the

rational strategy constant.

Such a solution may help to resolve the puzzle initially posed by this game, that even fully

rational players who held their rationality to be common knowledge would be unlikely to

play the equilibrium strategy. While this approach may also be useful in analyzing the other

games under consideration, the mathematics involved are daunting, and it is of sufficient

interest to simply compare ROR strategies with QMT strategies.

3.3.2 Prisoner’s Dilemma

In the prisoner’s dilemma of Example 1, each player’s best response function is

x∗i (x−i; β) =

{
0, x−i ≤ 1

9β

x−i − 1
9β
, x−i ≥ 1

9β

,

where xi is the probability of cooperation (of course, in practice this probability is not known

in a one-shot game, but I assume it is known for the sake of analysis. (It is possible to define

a continuous game for which players might choose from a continuum between defection and

cooperation, although I am not aware of this having been done.). The only Nash equilibrium

when β <∞ is (0, 0), as with standard preferences, although for sufficiently high β, defecting

with certainty is not a dominant strategy.. In fact, this game then becomes analogous to the

traveler’s dilemma, in which playing an standard equilibrium strategy is suboptimal if the

opponent is not rational.

Proposition 1. The Nash equilibria for Example 1, given two ROR players with identical

parameters β1 = β2 = β, and with all of this information common knowledge, are

Nash(β) =

{
{(0, 0)}, β <∞

{(x, x) : x ∈ [0, 1]}, β =∞

Proof. The best-response function shows that when β is finite, a positive probability of

cooperation xi is not an equilibrium strategy, since each player would cooperate with less
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probability that the other if possible, but both players cannot do so. That is, given xi > 0, we

have x∗i (x
∗
−i(xi; β); β) = max

(
0, xi − 2

9β

)
6= xi. On the other hand, xi = x∗i (x

∗
−i(xi;∞);∞)

and x∗−i(xi;∞) = xi, proving (x, x) ∈ Nash(∞) for all x ∈ [0, 1].

3.4 Quasi-Magical Thinking in Asymmetric Games

In this section I propose a definition of quasi-magical thinking that is applicable to all games

under consideration. This is intended to generalize the definition for symmetric games,

though at the time of writing I have not obtained a complete proof or counterexample of the

claim that for symmetric games it is equivalent to Definition 4. The definition recognizes two

immediate emotions likely to drive the nonconsequential decision-making of a QMT: hope

that one’s actions might bring about a more efficient outcome than expected, and fear that

one might either be taken advantage of or be punished.

Definition 5. In the general case of games under consideration, a QMT plays

ẋi(βi) = argsup
x∈[0,1]
Bi(x)6=∅

inf
β∈Bi(x)
y∈x∗−i(x,β)

ui(x, y; βi)

where

Bi(x) =

β ∈ [0,∞] : x ∈
⋃

y∈x∗−i(x;β)

x∗i (y; β)


Given this definition, a QMT believes whatever strategy is selected reveals, perhaps

ambiguously, one’s other-regarding preferences, so long as it corresponds to an equilibrium

under which both players share those preferences. The opponent is believed to respond by

behaving according to one of the possible preferences revealed; however, the worst possible

such response is believed to be made. This parsimoniously captures both the hope that

the opponent might positively reciprocate, and the fear that the opponent might negatively

reciprocate, depending on which is relevant to the circumstances.

In the case of the Prisoner’s Dilemma in Example 1, it is fairly clear that ẋi = 1; no

positive xi corresponds to an equilibrium for a finite parameter β, so the QMT needs only

maximize utility under an equilibrium with β =∞.
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The following subsections analyze the trust game and ultimatum game of Examples 2

and 3 using the framework of this model.

3.4.1 Trust Game

Because the trust game is sequential, the appropriate solution concept for an ROR first-stage

player is that of subgame perfect equilibrium. The static equilibria are relevant to a QMT

in the first-stage, so they are presented as well.

Proposition 2. The subgame perfect equilibria for the trust game given in Example 3 are

SPE1(β) =


{(0, 0)}, β < 3/16{

(0, 0),
(
1, 4

9

)}
, β = 3/16{(

1, 2
3
− 1

24β

)}
, 3/16 < β <∞

Proof. Player 2’s best response to Player 1’s strategy is

x∗2(x1; β) =

{
0, x1 ≤ 1

16β
2
3
− 1

24βx1
, x1 ≥ 1

16β

so Player 1’s anticipates a utility of

u1 (x1, x
∗
2(x1; β); β) =

{
1− x1 − 16βx21, x1 ≤ 1

16β

1− 3
16β

+ x1, x1 ≥ 1
16β

Utility is decreasing for x1 <
1

16β
and increasing for x2 >

1
16β

, so the utility maximizing

strategy is either x1 = 0 or x1 = 1. Calculate u1(0, x
∗
2(0; β); β) = 1 and u1(1, x

∗
2(1; β); β) =

2 − 3
16β

, and we have 1 > 2 − 3
16β

precisely when β < 3
16

, and indifference between the two

extremes for β = 3
16

.

Thus, a rational other-regarding sender will either send all or nothing, depending on how

large β1 is, but this doesn’t explain why many people send intermediate amounts. (Also, note

that receivers return a greater proportion the more is sent.) To analyze QMT behavior, it is

first necessary to compute the static equilibria for the game, including for the case β =∞.

Proposition 3. The static equilibria for the trust game given in Example 2 are

Nash(β) =


{(0, 0)}, β < 1/4{(

1, 2
3
− 1

24β

)
,
(

1
4β
, 1
2

)
, (0, 0)

}
, 1/4 ≤ β <∞{(

1, 2
3

)}
∪ {(0, 0)}, β =∞
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Proof. Player 1’s best response to x2 is

x∗1(x2; β) =


0; x2 ≤ 1

3
3x2−1

8β(2−3x2)2 ,
1
3
≤ x2 ≤ 2

3
− −1+

√
1+32β

48β

1, 2
3
− −1+

√
1+32β

48β
≤ x2 ≤ 2

3

with the altruistic strategy of x2 > 2/3 ignored. Solving the system x1 = x∗1(x1; β); β) and

x2 = x∗2(x
∗
1(x2; β); β) yields the equilibria for β < ∞ (this is easily done using a computer

algebra system, such as Mathematica).

For β = ∞, observe that for x2 > 0, x∗2(x1;∞) = limβ→∞
2
3
− 1

24β
= 2

3
and x∗1(

2
3
;∞) =

lim→∞ x
∗
1(x2; β) = 1, proving (1, 2/3) the unique equilibrium for positive x1. Now, observe

that x∗2(0, β) = 0 for all 0 < β <∞, so x∗2(0,∞) = limβ→∞ 0 = 0. Similarly, x∗1(0; β) = 0 for

all 0 < β <∞, so x∗1(0;∞) = 0, proving that (0, 0) is an equilibrium for β =∞.

Proposition 4. Player 1’s QMT strategy in Example 3 is ẋ1(β1) = min
(

1, 1
4β1

)
.

Proof. Sending x1 = 1 is consistent with an equilibrium for any β ≥ 1/4, and we have

inf
β≥1/4

u1(1, x
∗
2(1; β); β1) =

1

4
,

with x∗2(1; 1
4
) = 1

2
. Therefore, the QMT maximizes utility by playing ẋ1(β1) = x∗1(

1
2
; β1) =

min
(

1, 1
4β1

)
, which is an equilibrium for β = β1.

This provides an explanation for why many players send partial amounts. A sender might

hope that sending more would induce reciprocity, but realizes that one cannot reveal any

more than β = 1/2, which corresponds to 1/2 being returned, to which the QMT plays the

best-response. While this can motivate an untrusting sender to make an investment, it can

also lead a trusting sender to lower the amount sent. This would happen if the opponent is

believed to have β2 > 1/4 but play as if β = 1/4.

Proposition 5. Player 2’s QMT strategy in Example 3 is ẋ2(β2) = 1/2 + ε, where ε > 0 is

an infinitesimally small quantity.
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Proof. Note that because the QMT strategy is the argument of the supremum, including ε is

unnecessary, but it clarifies that slightly more than 1/2 must be sent to maintain an efficient

equilibrium.

The theory of equilibrium selection suggests another approach, using the concept of

risk-dominance. Using the definition in (Harsanyi, Selten, et al. 1988), given a pair of

equilibria, one equilibrium risk-dominates the other if it yields a higher expected payoff than

the other, assuming the opponent selects the same equilibrium with some probability and

otherwise selects the other equilibrium in the pair. In this game, for 1
2
< β < 5+

√
29

8
≈ 1.3,

the non-payoff-dominant equilibrium
(

1
4β
, 1
2

)
actually risk-dominates the payoff-dominant

equilibrium, which is another possible explanation for why a player might send a low but

positive amount, especially given that Harsanyi 1995 argues that risk-dominance may be a

preferable selection criterion to payoff-dominance. The sequential nature of the game calls

this explanation into question; however, it may be applicable to QMTs who viewed the game

as simultaneous.

Proposition 6. For β > 1/2, E1 = (1, 2
3
− 1

24β
) payoff-dominates E2 =

(
1
4β
, 1
2

)
, but E1

risk-dominates E2 if and only if β > 5+
√
29

8
≈ 1.3.

Proof. Assume β > 1/4. Denote E1 = (1, 2
3
− 1

24β
) and E2 =

(
1
4β
, 1
2

)
. To prove payoff-

dominance of E1 from the sender’s point of view, calculate

u1 (π1(E1), π2 (E1) ; β) = 2− 3

16β

and

u1 (π1(E2), π2 (E2) ; β) = 1 +
1

16β

Since 2− 3
16β

> 1 + 1
16β

, the payoff-dominance of (1, 2
3
− 1

24β
) is established. Now, calculate

the utilities resulting from the receiver choosing a different equilibrium strategy:

u1

(
π1

(
1,

1

2

)
, π2

(
1,

1

2

)
; β

)
=

3− 2β

2

u1

(
π1

(
1

4β
,
2

3
− 1

24β

)
, π2

(
1

4β
,
2

3
− 1

24β

)
; β

)
=

(4β − 1)(4β + 1)(16β + 1)

64β3
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Let p1 denote the risk factor for E1, defined as the solution to

p1u1 (π1 (E1) , π2 (E1) ; β) + (1− p1)u1
(
π1

(
1,

1

2

)
, π2

(
1,

1

2

)
; β

)
=

= p1u1

(
π1

(
1

4β
,
2

3
− 1

24β

)
, π2

(
1

4β
,
2

3
− 1

24β

)
; β

)
+(1−p1)u1

(
π1

(
1,

1

2

)
, π2

(
1,

1

2

)
; β

)
and let p2 denote the risk factor for E2, defined by

p2u1 (π1 (E2) , π2 (E2) ; β) + (1− p2)u1
(
π1

(
1

4β
,
2

3
− 1

24β

)
, π2

(
1

4β
,
2

3
− 1

24β

)
; β

)
=

= p2u1

(
π1

(
1,

1

2

)
, π2

(
1,

1

2

)
; β

)
+ (1− p2)u1 (π1 (E1) , π2 (E1) ; β)

It can be verified numerically that p2 > p1 if and only if 1
4
< β < 5+

√
29

8
≈ 1.3, proving

risk-dominance of
(

1
4β
, 1
2

)
for these parameter values.

3.4.2 Ultimatum Game

Proposition 7. The subgame perfect equilibria for the ultimatum game given in Example 3

are

SPE1(β) =


{(0, 1)}, β = 0{(

1
2
− −1+

√
1+32β

32β
, 1
)}

, 0 < β ≤ 1/4{(
1
4
, 1
)}
, β = 1/4{(

1
2
− 1

16β
, 1
)}

, 1/4 < β <∞

Proof. The responder’s best response function is

x∗2(x1; β) =


1

4β(1−2x1)2 , x1 6∈
(

1
2

+ 1−
√
1+32β
32β

, 1
2

+ 1+
√
1+32β
32β

)
1 x1 ∈

[
1
2

+ 1−
√
1+32β
32β

, 1
2

+ 1+
√
1+32β
32β

]
For β ≥ 1

4
, the proposer’s anticipated utility is maximized for x1 = x∗1(1; β) = 1

2
− 1

16β
.

Otherwise, it is maximized at the smallest offer that is accepted. The limiting case of β = 0

may be verified using L’Hôpital’s Rule.

Offers greater than 1/4 are due to inequity-aversion, while offers less than 1/4 are driven

by avoidance of rejection. The case β = 0 may be thought of as β = ε > 0, an infinitesimally

small value, so that x2 = 1 is a strict best response.
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Proposition 8. The static equilibria for the ultimatum game given in Example 3 are

Nash(β) =


{(0, 1)}, β ≤ 1/8{(

1
2
− 1

16β
, 1
)}

, 1/8 < β < 1/4{(
1
2
− 1

16β
, 1
)
,
(

1
4
, 1
4β

)}
, 1/4 ≤ β <∞{(

1
2
, 1
)
, (0, 0)

}
, β =∞

Proof. The proposer’s best response function, given βi = β, is

x∗1(x2; β) =

{
0, x2 ≤ 1

8β
1
2
− 1

16βx2
x2 ≥ 1

8β

where x1 is the fraction of the endowment offered, and x2 is the probability that an offer

is accepted. The Nash equilibria are obtained by solving the system x1 = x∗1(x1; β); β) and

x2 = x∗2(x
∗
1(x2; β); β). The case of β =∞ is obtaining by noting x∗2(x1;∞) = 1 precisely when

x1 = 1/2, with x∗1(1;∞) = 1/2, and x∗2(x1;∞) = 0 when x1 6= 1/2, with x∗1(0;∞) = 0.

Proposition 9. Player 1’s QMT strategy in Example 3 is ẋ1(β1) = 1
2
− 1

16β1
.

Proof. So long as x1 6∈ {0, 1/4}, the only strategy by the responder that corresponds to an

equilibrium for some β is x2 = 1, to which the proposer plays the best response. Since the

QMT strategy is the argument of a supremum, the cases when this best response is 0 or 1/4

can be ignored.

If the sequence of play is reversed, the responder is faced with an interesting dilemma.

The offer must be accepted or refused without knowing what the offer is. Perhaps a QMT

responder believes that accepting would allow the proposer to get away with offering nothing,

and so such an unfair offer is preemptively rejected. The model does make a prediction for

this scenario.

Proposition 10. Player 2’s QMT strategy in Example 3 is ẋ2(β2) = min{1− ε, 1
4β2
}.

Proof. Playing x2 = 1 is consistent with β = 0, in which case the QMT fears being sent

nothing, while the only offer consistent with an equilibrium in which the responder plays a

mixed strategy is x1 = 1/4. Therefore, the QMT plays the best response to this offer (or

rejects with an infinitesimal probability if the best response is x2 = 1). Note that including

ε is unnecessary, but done for clarification.
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4 Conclusion

I proposed a new model integrating other-regarding preferences with quasi-magical think-

ing. The chief innovations were to introduce concave preferences over relative payoffs, and to

define quasi-magical thinking in terms of the effect demonstrating a certain degree of other-

regarding preferences is hoped (or pretended) to have on the opponent’s choice. The model

was applied to the prisoner’s dilemma, explaining experimental results that cooperation in-

creases when the opponent is know to have cooperated as opposed to having defected, but

tends to be greatest absent any information. It was applied to the ultimatum game, predict-

ing that higher offers are due to inequity-aversion, but lower ones due to profit-maximizing

motives with the lowest accepted offer, given beliefs, except in the case of quasi-magical

thinkers who believe every offer is accepted and so decide based on inequity-aversion. The

trust game was analyzed, suggesting that rational players will send either all or nothing, but

magical thinkers will send partial amounts depending on their preferences. The hypothesis

that irrational, cooperative behavior can be deliberate was explored in the context of the

traveler’s dilemma.

This model suggests new experimental approaches to test for nonconsequential decision-

making. Reversing the sequence of play in the ultimatum game and trust game, or conducting

them as simultaneous games, could yield interesting results and test the predictions of this

model for those situations.

The cooperative model, particularly the effect asymmetries have on perceptions of fair-

ness, are an important area of research. Other phenomena not addressed by the model, such

as framing effects and imperfect information, deserve focus as they have been observed to

significantly affect behavior in the experiments covered by this paper. Extending the model

to n-person games, or to larger choices, could be a useful endeavor. The model could be

applied to additional games to check the appropriateness of the model’s conclusions, or be

modified to allow for more generality (such as by assuming a prior distribution over the

opponent’s preferences). The hypothesis that nonconsequential decision-making might be

a strategy of its own within a broader type of equilibrium should be explored further and

given a more rigorous treatment.
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